

DRAFT - shareable for learning or questions but not yet quotable or publishable. Please contact

Daniel Hardman before linking or citing.

When Disaster Strikes, How Do I Recover?
(And how do I prevent disaster in the first place?)

Daniel Hardman, Jan 2019

Pick Your Disaster

Self-sovereign identity (SSI) has to be robust. It should be hard for accidents or malice to wrest
control of an identity away from its rightful owner--and it should be easy to fix problems if they
do arise.

We can test robustness with questions like this:

If I’m managing my self-sovereign identity with an app on my phone, and I accidentally
leave my phone on a park bench, can a malicious person take over my identity? If so,
how do I get it back?

There are many variations on this question. Instead of a lost phone, the disaster might involve a
hacked server, ransomware, lost keys, or a damaged body that no longer matches a biometric.
However, prevention and recovery answers are similar across scenarios.

First Answer

The technology that Sovrin brings to bear on this problem is complex and nuanced. We could 1

list its ingredients here--but such a list would feel long and mysterious without a lot of
explanation. Besides, like ingredients in a recipe, the result is more than just a mixture of the
parts. So instead, let’s begin with a narrative about the experience of a Sovrin user named
Alice, who’s just discovered that her phone was stolen from a park bench.

Step 1: Revoke the Device’s Ability to Use Credentials

The first thing Alice should do when she discovers the problem is to revoke her lost phone’s
ability to use her credentials. Alice does this by using any other device she controls to issue a 2 3

1 Most of the discussion here applies to Hyperledger Indy as well as to Sovrin, since Sovrin relies heavily
on features in Indy’s codebase. However, Sovrin is mindful and choosy about how Indy features should
be used, where Indy is more flexible. Also, challenges to our answer are likely to touch on the trust model
that is Sovrin’s unique contribution. Thus, the discussion assumes Sovrin.
2 Technically, Alice is revoking the privileges of an ​agent​, not a ​device​. A device might run multiple
software agents. However, for the current discussion we’ll keep things simple and equate agent with
device.
3 Sovrin advocates never allowing a single point of failure in terms of control. Alice can achieve this by
having a tablet and/or cloud service in addition to a mobile device. She can also use paper and/or people
to exert her control. More on this later.

DRAFT - shareable for learning or questions but not yet quotable or publishable. Please contact

Daniel Hardman before linking or citing.

transaction to the public ledger. Recording such a transaction can be done in seconds, and it
takes effect very quickly, worldwide. It does not require any connection to the stolen or hacked
device, or to any issuers, or to any of Alice’s connections--and Alice can do it in a
privacy-respecting way. This is NOT credential revocation; Alice can continue to use her
credentials on other devices. This is only revocation of the compromised phone’s ability to use
her credentials.

Once Alice does this, Malfoy (the thief) cannot impersonate Alice in proving interactions, in
either existing ​or new​ relationships. This is true no matter which passwords are cracked, which
biometrics are circumvented, and which storage collections or secure enclaves are read via
forensic tools or side channel attacks. Malfoy could expose every password, credential, and
secret that Alice possesses, and still not be able to impersonate her when proof is requested.

This device revocation mechanism is a new invention that does not exist in any other SSI
ecosystem. 4

Its workings are mathematical and cryptographic, and are documented in a ​report about
decentralized key management systems​ produced under contract for the US Department of
Homeland Security. The mechanism was demonstrated publicly in early 2018. It’s implemented
in a feature branch of Sovrin’s Indy source code, and is slated for merging over to Indy’s stable
branch for mainstream adoption.

Importantly, device revocation is reversible.​ This means that Alice can use it aggressively,
without worrying about being too draconian. If the phone turns up at the bottom of her purse
instead, the revocation can be undone. 5

Step 2: Revoke Relationship Keys

Alice should next revoke any private keys that the stolen phone knows. She does this on the
same device that she used in step 1, and the experience can be as simple as one button press. 6

Where the previous step kept Malfoy from using credentials to ​escalate​ trust as Alice, this step
prevents Malfoy from encrypting and signing in a way that leverages ​existing​ trust to
impersonate her.

4 If other ecosystems wanted to adopt such a feature, they would need to support agent authorization
registries on their blockchain, and they would need to bake into their proof exchange protocol the notion
that each proving device must be demonstrably unrevoked.
5 Reversal is governed either by a key that Alice doesn’t keep on her device, or by an M-of-N multiparty
digital signature, or both. Thus, reversal is straightforward for Alice to initiate, but cannot be gamed by
Malfoy.
6 Underneath, if Alice is using DIDs rooted on the public ledger, Sovrin software writes new DID docs that
deauthorize the suspect keys, as a series of ledger transactions. If she is using peer DIDs, the software
does analogous work to tell each contact known to her phone’s wallet that her side of the relationship has
been updated.

https://github.com/hyperledger/indy-sdk/blob/677a0439487a1b7ce64c2e62671ed3e0079cc11f/doc/design/005-dkms/DKMS%20Design%20and%20Architecture%20V3.md
https://github.com/hyperledger/indy-sdk/blob/677a0439487a1b7ce64c2e62671ed3e0079cc11f/doc/design/005-dkms/DKMS%20Design%20and%20Architecture%20V3.md

DRAFT - shareable for learning or questions but not yet quotable or publishable. Please contact

Daniel Hardman before linking or citing.

This step may take a bit longer than step 1 (minutes, maybe), but it can be performed in parallel
across all of Alice’s relationships, and any latency that Alice experiences is likely to be latency
that hampers an attacker as well. Also, if Alice and her connections are following best practices
as advocated by Sovrin, the stakes for these notifications will be low. This is because both
parties will have a habit of re-requesting credential-based proof from their remote connection
partner--either on a schedule, or at any moment when trust is particularly vital.

Do We Need to Do More?

Let’s step back for a moment and consider where Alice is protected, having taken these first two
steps to remediate.

● Malfoy cannot impersonate her in any existing relationships, or in any new relationships,
ever,​ on the basis of anything he gains from the stolen device.

● Alice can continue to use her existing credentials in existing relationships with exactly
the same trust as before.

● Alice can create new relationships and build trust in those relationships using her
existing credentials, with no risk that the credentials will be misused or that she will be
impersonated, anywhere.

● Alice can request and receive new credentials that are just as secure as the old ones. An
attacker has not gained any new ability to pose as Alice to request new credentials.

● Alice can continue to rotate keys, authorize and deauthorize devices and agents, and so
forth.

If Alice were not using Sovrin, this list of assurances would ​be much less satisfying​.

Her credentials would still be abusable in existing relationships, and could still be used to
impersonate her in new ones. She’d be forced to get all her credentials revoked and reissued,
and would be vulnerable for as long as it took for that process to complete.

So, Alice can feel somewhat reassured. Because of Sovrin’s unique device revocation feature
and the specially designed proving protocol that complements it, t​he immediate risk has been
mitigated, and many of the long-term negative impacts vanish.

But should she take further steps?

Altered Incentives

Before answering that question, it is worth considering how radically Sovrin alters hacker
incentives, with just the recipe we’ve described so far.

DRAFT - shareable for learning or questions but not yet quotable or publishable. Please contact

Daniel Hardman before linking or citing.

● First​, it eliminates central troves (either in an identity database, or for peer DIDs on a
blockchain) and shared private keys. This takes bulk hacking off the table--the most an
attacker can hope for is one identity per intrusion.

● Second​, because of its ​3-dimensional identity model​, it partitions identity into pairwise
relationships, and limits the scope of a hack to only those relationships that a given
device knows. If Alice always uses a work-oriented identity on a laptop, and a
personal-oriented identity on a phone, then the missing phone only endangers the
subset of Alice’s identity that’s personal.

● Third​, Sovrin breaks the association between possessing credentials and being able to
prove anything with them, such that capturing credentials in and of itself gives no
advantage. This drastically alters the need for credential revocation and reissuance.

● Fourth​, Sovrin shrinks the window for credential abuse ​to seconds​ from the time a risk is
discovered.

This is not a claim that Sovrin’s security is impervious.

Although Sovrin has had at least two independent security audits and two years of exposure on
HackerOne, no system is hack-proof, and the SSI space is young enough that we should
assume vulnerabilities and patches await discovery. However, shifting incentives has
substantial value because it keeps malicious attention elsewhere. This is a good thing for
Sovin-centric Alice.

But let’s assume that Alice is unimpressed by our side note about shifted incentives. She’s
wondering what else she should do to be prudent.

Wallets

When Malfoy steals Alice’s phone, he gets a copy of her wallet. What mischief can he do with
it?

At first, not much. All Sovrin wallets share a ​common encryption layer that has very strong
guarantees about data at rest​. Whether the wallet is persisted to disk using sqlite drivers, or
using files in the file system, or using an industrial strength database, the data in the wallet’s
secure storage is equally mysterious to Malfoy. He cannot use a byte editor or a hacked sqlite
engine or admin access to a database or root access in the OS to circumvent this encryption,
because​ the encryption is independent of the storage layer​. As long as the encryption remains
in place, Malfoy doesn’t know:

● What is contained in each wallet item
● Which items in the wallet are associated with DIDs, keys, or other information
● How records are indexed (lookup keys are encrypted in a non-correlating way)
● Which DIDs Alice controls

https://docs.google.com/document/d/1bwJMcUl43K-HuHBXumoybbHf78Um_e811NVbH28I3xo/edit
https://github.com/hyperledger/indy-hipe/blob/master/text/0013-wallets/README.md#composition
https://github.com/hyperledger/indy-hipe/blob/master/text/0013-wallets/README.md#composition

DRAFT - shareable for learning or questions but not yet quotable or publishable. Please contact

Daniel Hardman before linking or citing.

● What public or private keys values might be present
● Which key values are associated with one another or with DIDs or payment addresses

Furthermore, since ​Sovrin wallets never pass secrets across an API boundary​, no software that
uses Sovrin wallets could have accidentally leaked a key to any other place Malfoy can observe.

Malfoy might be able to inspect storage and make educated guesses that a subset of the items
are credentials, based on size, and that the remainder are non-BLOB-like items. And depending
on how Alice has tagged data, he might be able to see that at an unidentifiable place in the
wallet, there’s a credential that expires near a certain date. ​That’s about it​.

So, can the wallet be cracked?

Of course. The way to do this is not by smashing through its armor, though--it’s by going
through the front door. All wallets have to be unlocked, and Sovrin’s are no different. Thus,
Alice’s wallet is as safe or as vulnerable as she has made it by protecting her wallet’s unlock
key.

The strongest protections on the unlock key are provided by a combination of a secure enclave
and biometrics enforced by the OS. If Alice uses this type of protection, Malfoy may be out of
luck forever. But let’s suppose she does something much weaker, and Malfoy is able to unlock
her wallet after a minute or two of tinkering.

Now, Malfoy can see every DID, key pair, and credential that Alice’s phone knew about. This is
a bit of a privacy violation, in that he now knows the eye color on Alice’s driver’s license and the
job title in Alice’s employment credential. He might also be able to say with confidence that Alice
is connected to at least 203 other DIDs with values (but not owners) he knows, and he would
know which public keys have been used to authenticate those DIDs. He might know some of
Alice’s payment addresses, and which private keys formerly governed Alice’s spending.

But as we said earlier, because of Step 1, Malfoy can’t use these credentials to impersonate
Alice, and because of Step 2, he can’t contact any of Alice’s relationships or payment addresses
and encrypt and sign using the private keys he’s found.

Getting into the wallet makes little difference.

Link Secret

One other piece of interesting information may be exposed by a cracked wallet--Alice’s link
secret. This is a large random number that Alice uses to prove that all her credentials belong to
her instead of to someone else. It will be in the wallet on Alice’s phone if Alice does proving
there.

https://github.com/hyperledger/indy-hipe/blob/master/text/0013-wallets/README.md#managing-secrets
https://github.com/hyperledger/indy-hipe/blob/master/text/0013-wallets/README.md#encryption

DRAFT - shareable for learning or questions but not yet quotable or publishable. Please contact

Daniel Hardman before linking or citing.

Although it may sound dangerous for Malfoy to know this secret, the consequences are not very
dire. Malfoy can’t construct new, simulated credentials that appear to be owned by Alice. He
can’t take the secret out to the dark web and use it to track all the credentials Alice might ever
possess in the future, since the secret is always randomly blinded before it’s embedded in each
credential. He can’t correlate it to any of Alice’s proving interactions in the past or the future,
since it is only a randomly blinded form of the secret that is ever learned during proving.

Alice can continue to use this secret with existing and new credentials, even if Malfoy knows it. 7

Preventive Measures

Veterans of security analysis may be eager to point out corner cases in which the simple story
we’ve provided above isn’t satisfying. And they would be right to do so; corner cases are the
acid test for robustness.

Perhaps Alice has no other devices besides her phone. Perhaps Malfoy captures her phone and
has hours to hack it before Alice notices the breach. Perhaps Alice has a pending stock trade
worth a billion euros, secured until a few minutes ago by a key that Malfoy has now extracted
from her wallet. Perhaps a hundred other things.

Sovrin provides additional tools to help. However, many of them should be used before the
disaster, not after. For example:

● Some of the keys that Alice authorizes to act in her behalf can be keys she keeps on
paper, inscribed on stainless steel, or otherwise persists in a non-digital world. Some
keys can be controlled by trusted friends, family, or associates. Some keys can derive
from biometrics. All of these options are particularly important for vulnerable populations
such as refugees, who may not have a big digital footprint.

● Alice can set up rich M-of-N authorization policies on her agents, such that a quorum of
entities she trusts must agree by multi-party digital signature to changes in authorization,
to key rotation, to payments above particular thresholds, or to other dangerous events. If
Malfoy gets her phone before she realizes it, and attempts to transfer a billion euros, he
may be defeated because Alice’s cloud agent and her laptop (or her 3 best friends, or a
key that Alice keeps on paper in a vault) do not concur. Malfoy may have a similar failure

7 It could be argued that by definition there must be some risk to exposing this value, since it’s called a
secret. And that is true. The link secret is what lets Alice link multiple credentials in a complex proof:
“Here is proof of age from my passport, and proof of residence from my utility bill--and I can demonstrate
that these 2 credentials both belong to me and can be stitched together because they both contain
blinded values that derive from the same link secret that I alone know.” If Malfoy knows this secret and
possesses Alice’s credentials, he could do the same thing--​if​ he controlled a device that Alice has
authorized to represent her. But he lost that forever when Alice completed Step 1. Thus, the device
revocation feature is a counterbalance to the power of the link secret.

DRAFT - shareable for learning or questions but not yet quotable or publishable. Please contact

Daniel Hardman before linking or citing.

if he attempts to change Alice’s DID document in a way that wrests control away from
her.

● Alice can make her authorization policies even more sophisticated by requiring
biometrics to complement other key types, with a particular freshness: Only allow a
money transfer if one of the keys authorizing the transfer is a biometric that’s been
provided in the past 5 minutes.

● Alice can request in advance from her contacts that they echo back any changes in her
DID Document and authorizations as they see them, when they occur. This is a sort of
tripwire whereby Alice will learn about an intruder the minute he attempts to alter her
relationships in a way she didn’t initiate. ​Designs​ for Sovrin’s relationship management
protocol contemplate this reporting as best practice.

● A related tripwire is configurable among Alice’s agents. If she has set up wallet
synchronization among agents on her phone, laptop, and cloud, her laptop and cloud will
know as soon as her phone’s wallet changes state.

● Alice can use Sovrin’s ​secure wallet backup feature​ to keep a copy of her phone’s wallet
in a safe place, so she knows the exact scope of a breach.

● Alice can pre-arrange for “social recovery”--friends that each keep a shard of her data,
that she can contact in event of a disaster. If enough of her friends (M of N) agree to
recover her identity, then their pooled shards can be combined into a new wallet that
contains keys preauthorized (in Alice’s other policies) to take highly privileged action to
lock out intruders and finalize a recovery.

● Alice can pre-arrange with her connections to use a “dead drop” as a rendezvous point
in the event that a connection goes stale. This mechanism, which is also contemplated in
Sovrin’s relationship management protocol, prevents Malfoy from locking Alice
permanently out of her relationships; if he and Alice are struggling for control, Alice can
use the dead drop as a way to reestablish trust with her connections.

● Alice can use Sovrin’s relationship protocol to pre-arrange a key rotation policy on a
per-relationship basis, announcing that she plans to rotate keys every week, day, or
hour. This ​keeps such relationships on a timeout​; if Malfoy cannot wrest control of them
from Alice before the deadline, Alice knows they will become inert and harmless. (This is
particularly useful in combination with the dead drop for re-establishing the connection.)

● Instead of having a potentially deadly policy like “put everything in my trusted cloud”, or
an almost equally dangerous one like “replicate everything I need to use my identity onto
all my devices,” Alice can be very deliberate about which credentials she places on her

https://jira.hyperledger.org/browse/IS-1140
https://github.com/hyperledger/indy-hipe/blob/master/text/0013-wallets/README.md#backup-and-recovery
https://jira.hyperledger.org/browse/IS-1141

DRAFT - shareable for learning or questions but not yet quotable or publishable. Please contact

Daniel Hardman before linking or citing.

phone, which agents she permits to hold her link secret, which agents she uses in which
relationships.

It is important to note that preventive measures and recovery features have a potential
downside. Each represents an alternate way to exercise control, and thus a new surface for
attack. The world’s easiest lost password recovery may also be a hacker’s favorite place to
probe. For this reason, the features listed above strike a balance between safety and ease of
use.

Most of these preventive measures are careful applications of the principle of diffuse trust.

Sovrin’s tools, APIs, trust policies, and best practices carry this principle much further than most
SSI solutions, and​ light years beyond centralized identity​.

What’s Possible, What’s Not

Despite all of the features that Sovrin offers to prevent and remediate disasters, there will
always be unhandled contingencies. If Alice falls, hits her head, and develops amnesia just as
she’s about to revoke her phone, Sovrin’s answer may be less than fully satisfying.

The ultimate fallback position of all identity solutions is to burn down or abandon what you have
(credentials, relationships, devices, software), and start over. It is possible to imagine cases
where this will be the answer in Sovrin, too--though Sovrin’s layers of prevention and protection
make the need for this type of fix orders of magnitude less likely than with other approaches.

Even in this most unpleasant eventuality, Sovrin helps:

● By focusing on zero-knowledge proving and attribute-based trust, Sovrin makes a restart
of identity feel very different to connections. They may need to substitute a new DID for
an old one, but they don’t need to map from old credentials to new ones, because they
don’t ever see your credentials in the first place. They simply perceive that you are using
a new DID with your familiar attributes.

● Sovrin’s credential revocation is testable against specific points in time, such that you
can use a revoked driver’s license to prove you were a licensed driver before the
revocation event. This may eliminate or at least postpone the need to restart in some
cases.

● Sovrin’s credential revocation mechanism is uniquely privacy-preserving--so a restart
does not leave a trail of breadcrumbs for third parties to analyze, compromising privacy
on either your old identity or your new one. This contrasts with other approaches, where

DRAFT - shareable for learning or questions but not yet quotable or publishable. Please contact

Daniel Hardman before linking or citing.

an attacker may be able to perform temporal correlation on revocation lists or similar
resources, learning more about your identity even as you revoke it.

● Sovrin lets you start over on a per-relationship basis rather than globally, if you like.

● It lets you start over on a per-credential basis rather than globally, if you like.

● It lets you start over on a per-device (per-agent) basis rather than globally, if you like.

● It requires all Sovrin wallets to support an export and import feature, guaranteeing that
your credentials and relationships are never hostage to a particular storage provider.
This also guarantees that Alice can know exactly what needs rebuilding.

● It provides free, open-source reference implementations of the full software stack,
guaranteeing that your software is never hostage to a particular solution provider.

Conclusion

Sovrin has a very rich story for disaster recovery. Common problems that would be disastrous in
other solutions are quickly remedied and/or substantially mitigated in Sovrin. Even for more
complex challenges, Sovrin provides excellent preventive measures and a set of strong
guarantees about how recovery can be managed. These measures are a reflection of the
principle of diffuse trust, which is a core tenet of Sovrin’s architecture. Sovrin cannot eliminate
all disasters, and its solutions are still maturing. However, it is clearly a thought leader on this
topic in the SSI community.

